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The main purpose of this study is to present a new method of
evaluation of the heterogeneity of microporous carbons (called the
LAPLACE method). The simple genetic algorithm (SGA) is modi-
fied and applied to the study of the LAPLACE method. The applica-
bility of this procedure as well as the CONTIN package is checked
based on new adsorption isotherm equations derived for two model
pore size distributions (trapezoidal and bitriangular). The obtained
results show that the proposed procedure and algorithm can be
successfully used for the evaluation of the heterogeneity of mi-
croporous carbons. This procedure, as well as other (namely the
Jaroniec–Choma equation, DFT theory, Nguyen–Do, and Horvath–
Kawazoe) methods, together with the distributions of adsorption
potential and adsorption energy, is applied to the characterization
of series of commercially available carbons. C© 2002 Elsevier Science (USA)

Key Words: adsorption; active carbon; CONTIN; DA; DFT; HK;
Nguyen-Do method.
INTRODUCTION

A great many porous materials are characterized by structural
and energetic heterogeneity (1–6). One of the most important
problems of characterization of porous solids is the evaluation
of the distribution of pores, especially of micropores (i.e., pores
with a diameter smaller than 2 nm, according to the IUPAC
classification (7, 8)) from the adsorption data. The theoretical
description of physical and chemical adsorption on heteroge-
neous porous solids is based on the general adsorption integral
equation (GAI) (1–5, 9–11). This concept leads to the use of the
homotattic patch approximation, which assumes that the porous
solids surface consists of an array of patches being geometrically
and energetically uniform. The dimensions of such patches are
small compared with the total adsorbing area, so when there is
a large number of patches then the geometrical (e.g., pore ra-
dius and/or pore width) or energetical (e.g., adsorption energy)
distribution can be considered to be continuous.
1 To whom correspondence should be addressed. E-mail: aterzyk@chem.uni.
torun.pl.
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From the mathematical point of view, the assumptions men-
tioned above lead to a linear Fredholm integral equation of the
first kind, which can be written in the following general form
(12):

g(s) =
b∫

a

K (t, s) f (t) ds. [1]

Here, f (t) is an unknown function which should be found, while
g(s) is a known one. The function of two variables K (t, s)
is the kernel. Note that integral Fredholm equations, as op-
posed to integral Volterra equations, involve define integrals with
fixed lower and upper limits (a and b in Eq. [1], respectively).
Equation [1] is the analogue to the matrix equation

g = K · f, [2]

whose solution is f = K−1 · g, where K−1 is the inverse matrix.
Like Eq. [1], Eq. [2] has a unique solution whenever g is nonzero
(the homogenous case with g = 0 is hardly ever useful) and K
is invertible.

In the field of adsorption science the kernel K (t, s) represents
the adsorption model (e.g., the local adsorption isotherm on a
homotactic patch of the solid surface), g(s) denotes the experi-
mental function (e.g., the overall adsorption isotherm), and f (t)
is the unknown pore or adsorption energy distribution.

Unfortunately, all the linear Fredholm integral equations of
the first kind formulated on the ground of adsorption science
are ill-posed (1–4, 9–11). That means that the right side of the
presented equation is not known accurately, so we, in general,
should formulate the problem as (13, 14)

g(s) + ε(s) =
b∫

a

K (t, s) f (t) dt, [3]

where ε(s) represents an error term and is an arbitrary function
except for some condition with respect to the size of ε(s), such as
|ε(s)| ≤ M or

∫ b
a ρ(s)ε2(s) ds ≤ M̄ , ρ(s) > 0 (where M and/or
8
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M̄ can be treated as the maximum experimental error (upper limit
of error value) and/or as the maximum average experimental
error) (14). Instead of a unique solution of Eq. [3] we get a
family of solutions �. The real problem then is to pick out
of the family of functions � the true solution �. This cannot
be done without more information about the problem stated in
Eq. [3]. However, we can assume that the true solution � is a
reasonably smooth function. So the smoothness of the unknown
distribution function f (t) was used as an additional minimizing
condition for the stabilization of the solution. Basing on such an
assumption, the classical least square functional defined as (13)

Minimize

∥∥∥∥∥g(s) −
b∫

a

K (t, s) f (t) dt

∥∥∥∥∥
2

with respect to f (t)

[4]

should be replaced by the functional (15)

Minimize

∥∥∥∥∥g(s) −
b∫

a

K (t, s) f (t) dt

∥∥∥∥∥
2

+ 	[ f (t)]

with respect to f (t), [5]

where 	[ f (t)] is an additional term (i.e., penalty function (16))
for the stabilization of the solution. In the well-known regular-
ization method, the term can be written in three alternative forms
(13, 14, 17):

	[ f (t)] = α

b∫
a

f (t)2 dt [6a]

	[ f (t)] = α

b∫
a

[
∂2 f (t)

∂t2

]2

dt [6b]

	[ f (t)] = α

b∫
a

[
∂n f (t)

∂tn

]2

dt . [6c]

Here α is a regularization parameter and it is the mutual weight-
ing of both terms in Eq. [5].

On the other hand, it is possible to incorporate a smoothing
condition into Eq. [4] as follows (18):

Minimize

∥∥∥∥∥g(s) −
b∫

a

K (t, s) ·
N∑

i=1

wiξi (t) dt

∥∥∥∥∥
2

with respect to f (t). [7]

Here N is a number of trial functions ξi (t) derived from a com-
plete set forming a basis in a Hilbert space. Obviously, the num-

ber, position, and shape of the chosen functions strictly depend
on the considered physical problem. The unknown coefficients
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wi are now estimated by orthogonalizing the residual in Eq. [7]
with respect to a suitably chosen set of functions.

In the current paper, two alternative approaches based on the
theory of micropore filling (TOMF) are presented and used to
evaluate the micropore size distributions (MPSD) from both
generated (pure and disturbed by Gaussian error (19)) and
some experimental adsorption isotherms. First, the well-known
CONTIN algorithm written by Provencher (20, 21) was modi-
fied and used to solve the adsorption integral equation with
Dubinin–Radushkevich (DR) (7) or Dubinin–Astakhov (DA)
(7) equations as a kernel. Although both equations are thermo-
dynamically inconsistent (4, 9, 22, 23), they still remain the most
frequently used for the characterization of microporosity of acti-
vated carbons. Moreover, as was shown recently by Condon (24,
25), both equations may be derived from an isotherm equation
that has its basis in simple quantum-mechanical assumptions.

Second, a new LAPLACE algorithm based on both Laplace
transforms and optimization by evolutionary algorithms was de-
veloped and adopted to determine the structural heterogeneity of
microporous activated carbons on the basis of the TOMF. A sim-
ple strategy for stabilizing an ill-posed problem is to reduce the
number of degrees of freedom by fitting a parameterized solu-
tion to the data. The well-known Jaroniec–Choma equation with
gamma distribution is an example of this method. This model,
originally proposed by Jaroniec and co-workers (26), was used
to determine the MPSD from the experimental data. The results
obtained on the basis of the TOMF are compared with those ob-
tained from density functional theory (DFT) (27–31) from the
Nguyen and Do method (ND) (32–35) and from the Horvath
and Kawazoe procedure (HK) (36–42). Moreover, the adsorp-
tion potential (APD) (43) and adsorption energy (AED) (1, 2,
4, 11, 35, 44–46) distributions are evaluated from experimental
low-temperature nitrogen adsorption isotherms.

NOVEL METHOD AND NUMERICAL ALGORITHM
APPLIED TO THE EVALUATION

OF THE MPSD FUNCTION

In the current study, for the description of adsorption on struc-
turally heterogeneous microporous solids, the following form of
the linear Fredholm integral equations of the first kind (i.e., with
DR and/or DA equations as a kernel) is assumed (1–5, 9–11, 40,
47, 48),

�global(p) =
Bmax∫

Bmin

exp

[
−B

(
A

β

)n]
f (B) d B, [8]

where �global(p) is the experimental (overall) adsorption
isotherm, A = −�G = RT ln(p0/p) is the adsorption poten-
tial, defined as change in the Gibbs free energy taken with a
minus sign, B is a structural parameter equal to (1/E0)n , R
is the universal gas constant, T is temperature, p and p de-
0

note the equilibrium pressure and the saturation vapor pressure,
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respectively, β is the similarity coefficient, equal to 0.292, for
nitrogen (49), and n is the equation parameter, equal to 2 for
the DR isotherm. A number of relations between the parameter
of micropore structure (micropore half-width) and B have been
developed up till now (see references in (50)). The best known
of them, originally proposed by Dubinin (51), is defined by

xn = Cn

B
. [9]

For the adsorption of nitrogen on activated carbons Bhatia
and Shethna (49) assumed C = 11.4. Knowing the f (B), the
micropore size distribution (MPSD) can be obtained using the
following transformations:

f (x) = f (B)
d B

dx
[10]

f (x) = −Cx−n−1 f (B) [11]

Developed by Provencher (20, 21), CONTIN is a package
for solving noisy linear integral equations of the first kind and
system of (possibly ill-conditioned) linear algebraic equations.
This program suit is often applied to solve integral equations of
the first kind with respect to effectively continuous distributions
of diffusion coefficients, molecular weights, relaxation times,
electron densities, adsorption energy distributions (46, 52–58),
pore size distributions (35, 52, 55–60), etc. As mentioned above,
in CONTIN the regularization method was used for the stabi-
lization of solution. In CONTIN the classical functional of the
form

Minimize
LC∑

i=1

∥∥∥∥∥∥�i −
Bmax∫

Bmin

exp[−Byi ] f (B) d B

∥∥∥∥∥∥
2

with respect to f (B), [12]

where LC is a number of isotherm points, is replaced by the
functional proposed by Provencher (61);

Minimize
LC∑

i=1

∥∥∥∥∥∥�i −
Bmax∫

Bmin

exp[−Byi ] f (B) d B

∥∥∥∥∥∥
2

+ α‖ f ′′(B)2‖

with respect to f (B), [13]

where f ′′(B) is the second derivative of f (B) (it is unknown
(estimated) distribution of B and α is a regularization parameter
determined in CONTIN using a Bayesian approach. We want to
point out here that there are no assumptions as to shape and the
sign of f (B) in CONTIN package; however, applying natural
condition of no negativity of f (B) at any B one can obtain stable
solution possessing physical meaning.

Following Dubinin and Stoeckli (47), the approximate solu-
tion of Eq. [8] can be obtained over the integration range (0, ∞).

The most familiar reason for using such an integration range is
related to the simplification of the problem defined by Eq. [8]
YK ET AL.

(one should notice that limitation or no limitation of the integra-
tion range does not practically affect the shape of the distribution
functions with respect to the pore size or adsorption energy). The
above assumption leads to a Laplace transform (12) defined as

ℵ{ f } = �global(p) =
∞∫

0

exp[−By] f (B) d B, [14]

implying that y = (A/β)n . Both �global(p) and f (B) were ap-
proximated on (0, ∞) by

�global(p) ∼=
Mf∑
j=1

w jη j (p) [15]

f (B) ∼=
Mf∑
j=1

w jϕ j (B, B0 j ), [16]

where Mf is a number of base functions,w j is a vector of weights,
ϕ j (B, B0 j ) is a series of base functions defined below (Eq. [18]),
η j (p) is a series of functions approximating the global adsorp-
tion isotherms θglobal(p), and B0 j is an average value of the j th
base function.

As a result of these transformations, an approximate formula
for �global(p) can be expressed by

�global(p) =
∞∫

0

exp[−By]
Mf∑
j=1

w jϕ j (B, B0 j ) d B. [17]

The functions ϕ j (B, B0 j ) can be represented by the form (some
base functions used for approximation bimodal microporous
structure of activated carbons are presented in Fig. 1)

ϕ j (B, B0 j ) = B

B0 j
exp

[
−ω

∣∣∣∣ B

B0 j
− 1

∣∣∣∣
]

, [18]

where ω is a parameter which forms base functions across mod-
ification of its standard deviation. Note that the base functions
defined above are very similar shape to real functions consisting
of several peaks.

The solution of Eq. [17] possesses the form

�global(p) =
Mf∑

j = 1

w j (B0 j {exp[−ω]� j (B, B0 j )

+ exp[ω]� j (B, B0 j )}), [19]

where

� j (B, B0 j ) = 1

(ω − B0 j y)

{
1

(ω − B0 j y)
+ exp[ω − B0 j y]

[ ]}

× 1 −

(ω − B0 j y)
[20]
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FIG. 1. Some base functions ϕ j (B, B0 j ) used for approximation of bi mi-
croporous structure of activated carbons.

� j (B, B0 j ) = 1

(ω + B0 j y)

{
exp[−B0 j y − ω]

×
[

1 + 1

(ω + B0 j y)

] }
. [21]

One can see that the problem of solving Eq. [8] (i.e., the
adsorption integral equation) was transformed, in the approach
proposed in this study, into the minimization of the following
functional:

Minimize
∏

=
pmax∫

pmin

∥∥∥∥∥�global(p) −
Mf∑
j=1

w j� j (B, B0 j )

∥∥∥∥∥ dp

[22]

with respect to w j , B0 j ( j = 1, 2, . . . , M f ), and

� j (B, B0 j ) = B0 j {exp[−ω]� j (B, B0 j )+exp[ω]� j (B, B0 j )}.
[23]

As clearly shown in a series of earlier papers, the micropores
usually tend to group into two patches. Following this observa-
tion, Eq. [21] can be reduced to a biporous structure of micropore
size distribution,

Minimize
∏

=
pmax∫

pmin

‖�global(p) − w1�1(B, B01)

− w2�2(B, B02)‖ dp, [24]
with respect to w1, B01, w2, and B02.
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In the current search for optimal parameters (i.e., w1, B01, w2,
and B02), a modification of the simple genetic algorithm (SGA)
with real coding was developed. Such a novel optimization tech-
nique, proposed by Holland (62) and developed by Goldberg
(63), belongs to “special artificial intelligence techniques.” The
SGA maintains a population of individuals, P(t) = {xt

1, . . . , xt
n},

for iteration t (19). Each individual represents a potential solu-
tion to the problem at hand and is implemented as some data
structure (i.e., structure, object, and so on). Each solution xt

i
is evaluated to give some measure of its “fitness.” Then a new
population (iteration t + 1) is formed by selecting more fitting
individuals (selection step by means of modified roulette wheel).
Some members of the new population undergo transformation
by means of “genetic” operators (simple crossover and clas-
sical mutation) to form new solutions. After some number of
generations (stop condition) the algorithm converges. The best
individual is hoped to represent a near-optimum (reasonable)
solution.

OTHER METHODS OF THE EVALUATION OF MPSD

Different alternative methods of solution of Eq. [8] have been
proposed based on the theory of micropore filling (TOMF) (1–5,
10, 26, 40, 47, 64–70). For example, Jaroniec and Choma sug-
gested one of them (26). They approximated the unknown distri-
bution function f (B) by a monomodal gamma-type distribution.
Additionally, the authors assumed that a micropore region (i.e.,
integration boundaries) x ∈ (0, ∞) could be accepted. Taking
those assumptions into account Jaroniec and co-workers param-
eterized the integral equation defined by Eq. [8] and obtained a
simple formula for the overall adsorption isotherm (�global(p))
in micropores:

�JCh(p) =
[

1 +
(

A

βρ

)n]− v
n

. [25]

The MPSD (assuming a model of slit-like micropores) can be
obtained applying simple transformations,

F(z) = nρv

�(v/n)
zv−1 exp[−(ρz)n], [25a]

where z = E−1
0 , x = Cz, f (x) = F(z)(dx/dz)−1, and B = zn .

Due to the simplicity of Eq. [25], this isotherm has been used
to fit many experimental data to obtain such structural parame-
ters as n, ρ, and ν. This method should be used with some caution
because if the true MPSD does not confirm to the assumed form,
the derived MPSD can be erroneous (40, 60).

As has recently been reported, molecular models of adsorp-
tion such as density functional theory (DFT) (27–31) and Monte
Carlo (MC) (30, 31, 71–73) simulations can be successfully
applied to the description of adsorption phenomena. Based on
given intermolecular potentials of fluid–fluid and fluid–solid in-

teraction, they allow the construction of adsorption isotherms in
model pores. With a set of model isotherms in individual pores,



Y
382 KOWALCZ

the experimental isotherm can be described as a superposition
of the model isotherms and the pore size distribution. Such as-
sumptions lead to the linear Fredholm integral equation of the
first kind (74)

�global(p) =
Lmax∫

Lmin

�local (p, L) ϕ(L) d L, [26]

where �local(p, L) is a theoretical isotherm in a model pore
of size L(≡2x , where x is the half–width of a pore), and
ϕ(L) is the pore size distribution. The pore size distributions
(PSD and MPSD) were calculated using the DFT software from
Micromeritics (NORCROSS, GA) (74). A local mean field DFT
was first used by Seaton and co-workers (28). Olivier and co-
workers (27, 29) improved this method using a nonlocal mean
field DFT.

Nguyen and Do (32–35) developed a new method for the
evaluation of pore size distributions from adsorption data. The
procedure is based on the combination of the Kelvin equation
and the statistical adsorbed film thickness. The most important
feature of this method is the possibility of analysis of the struc-
tural heterogeneity of porous solids without separate approaches
to micro and mesopores. Additionally, it provides results close
to those obtained using the DFT method mentioned above (34,
35). Following Nguyen and Do’s method the local adsorption
isotherm equation possesses the form (32–35)

a =
rk (p)∫

rmin

f (Rp) d Rp +
rmax∫

rk (p)

wNG

Rp
t(p, Rp) f (Rp) d Rp, [27]

where rmin and rmax are the minimal and maximal half-widths
(or pore radii), respectively; WNG = 1 for slit like pores and 2 for
cylindrical pores; rk(p) is determined with the Kelvin equation
(γ is the liquid surface tension; νm is the liquid molar volume;
θ is the liquid–solid contact angle)

rk(p) = σs

2
+ t(p, Rp) + wNGγ νm cos(θ )

RT ln(p0/p)
, [28]

where the statistical adsorbed film thickness is equal to

[29]

t(p, Rp) = tm
cBzB

(1 − zB)

×
[

1 + (nBb/2 − nB/2)zn−1
B − (nBb + 1)zn

B + (nBb/2 + nB/2)zn+1
B

1 + (cB − 1)zB + (cBb/2 − b/2)zn
B − (cBb/2 + b/2)zn+1

B

]
,

tm = am/SBET (thickness of a single layer of the adsorbate); am

is the BET monolayer capacity; SBET is the BET specific sur-
face area; t(p, Rp) is the statistical thickness of adsorbed layer;
b = exp(�ε/RT );�ε is the excess of the evaporation heat due to

the interference of the layering on the opposite wall of pores (typ-
ically �ε is less than 3 kJ mol−1; in (32, 33) �ε ≈ 2.2 kJ mol−1);
K ET AL.

cB = cs,B exp�(Q p − Qs)/RT �; cs,B is the BET coefficient for
adsorption on a “flat” surface; Qs and Q p are the adsorption
heat on flat surface and in pores, respectively; zB = p/p0; nB

is the number (noninteger) of statistical monolayers of adsor-
bate molecules and its maximal value for the given Rp (or pore
half-width x) is equal to (Rp − σs/2)/tm ; and σs is the colli-
sion diameter of surface atoms (σs = 0.34 nm for C atoms on
carbon surfaces). Adsorption data were used to compute the
f (x) distribution with Eq. [27] and regularization procedure
under nonnegativity condition with unfixed one (automatically
determined on the basis of F-test and confidence regions using
the parsimony principle) within the scope of the slit-like pore
model. Similar procedures with the direct minimization, local,
and integral isotherm approximations were used previously to
investigate the pore structure of different adsorbents [35].

Horvath and Kawazoe (HK) (36–42) proposed a simple
method for evaluating the MPSD from a single gas adsorption
isotherm. It is based on the thermodynamics of adsorption and
for strictly microporous solids it leads for some cases to almost
identical results as obtained from DFT method (10, 50, 75). In
the case of the adsorption of nitrogen molecules on the activated
carbon the HK equation is given by

�(2dp) = ln

(
p

p0

)
− 62.38

2dp − 0.64

×
[

1.895 × 10−3

(2dp − 0.32)3
− 2.7087 × 10−7

(2dp − 0.32)9
− 0.05014

]
= 0.

[30]

The MPSD can be directly obtained from the adsorption data
by applying the transforms

�(2dp) = f

(
p

p0

)
[31]

Wmicropore = f

(
p

p0

)
[32]

d

d(2dp)
Wmicropore = d

d(2dp)
�(2dp), [33]

where dp is the micropore half-width.

ENERGETIC HETEROGENEITY OF SOLIDS

Energetic heterogeneity of porous solids results from the
structural heterogeneity (1–6, 10, 11, 53–60) (i.e., dispersion
of pore sizes, surface irregularities such as defects in crystalline
structure) and from the heterogeneity caused by differences in
the energy of interactions of an adsorbate molecule with surface
(the presence of different atoms and functional groups on carbon
surface, mineral pollutions in carbon materials and so on). For

the estimation of global energetic heterogeneity of porous solids
several methods have been proposed up to the present.
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The adsorption potential distribution is a simple method fre-
quently used in the literature (43). APD may be easily ob-
tained by numerical differentiation of the adsorption charac-
teristic curve:

F(A) = − d�(p)

d[RT ln(p0/p)]
= −d�(p)

d A
. [34]

Thus this is another method of presentation the adsorption
isotherm. In spite of the simplicity of this procedure, the APD
peak positions give information about distribution of energetic
sites in the pore region. In the current studies the well-known
interpolation by cubic spline is used for evaluation of the APDs
from the measured nitrogen adsorption isotherms.

According to another theory, the distributions of adsorp-
tion energetic sites can be obtained by applying the linear
Fredholm integral equation of the first kind (see Eqs. [1] and
[26])

�global(p) =
Emax∫

Emin

�local(p, E) f (E) d E, [35]

where �local(p, E)is a local adsorption isotherm describing an
adsorption process on energetically homogenous surface, and
f (E) is the distribution of adsorption energy. The Fowler–
Guggenheim equation (describing localized monolayer adsorp-
tion with lateral interaction) was frequently used as a kernel of
Eq. [35] (1, 2, 4–6, 11, 35, 53–58),

�local(p, E) = KFG p exp[zFGwFG�FG/kBT ]

1 + KFG p exp[zFGwFG�FG/kBT ]
, [36]

where KFG = K0FG(T ) exp[E/kBT ] is the Langmuir constant
for adsorption on monoenergetic sites and the preexponential
factor K0FG(T ) is expressed in terms of the partition functions
for an isolated gas and surface phases, zFG is a number of nearest
neighbors of an adsorbate molecule (assuming zFG = 4), wFG is
the interaction energy between a pair of nearest neighbors, kB

is the Boltzman constant (zFGwFG/kB = 380 K). For the eval-
uation of f (E) from measured nitrogen adsorption isotherms
a modification of the CONTIN package was applied (53–
58).

To describe all distributions obtained in this paper several
magnitudes such as surface area under the distribution, mean,
variance, dispersion, and skew were used. The values of these
parameters are determined on the ground of equalizations based
on the theory of statistical moments (76),

ζmax∫ (
∂�(p)

)

� =

ζmin

∂ζ
dζ [37]
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ζ̄ =
∫ ζmax

ζmin
ζ
(

∂�(p)
∂ζ

)
dζ

�
[38]

δ =
∫ ζmax

ζmin
(ζ − ζ̄ )2

(
∂�(p)

∂ζ

)
dζ

�
[39]

σ =
√

δ [40]

χ =
∫ ζmax

ζmin
(ζ − ζ̄ )3

(
∂�(p)

∂ζ

)
dζ

�
, [41]

here ζdenotes the micropore half-width (or adsorption energy)
nd ζmin and ζmax are the upper and lower limits of the analyzed
istribution, respectively; � is the surface urea under the pore
adsorption energy) distribution; ζ̄ is the mean, δ is the variance,

is the standard deviation, and χ is the skew. The characteris-
ics were calculated for the ranges of the pore half-widths and
nergies where strongly marked peaks occur.

THE NEW ISOTHERM EQUATIONS FOR ADSORPTION
ON HETEROGENEOUS MICROPOROUS SOLIDS

As mentioned by Rudziński and Everett (1), really existing
eterogeneous solids can be characterized by a complicated form
f MPSD, with a number of local minima and maxima. How-
ver, with a certain degree of accuracy, the real MPSD curve can
e (for practical purposes) approximated by some “smoothed”
unctions and their shape is described by a small number of pa-
ameters. Certainly, when the proposed model of the MPSD does
ot describe the equilibrium data well a series of “smoothed”
unctions should be introduced.

New adsorption isotherm equations developed in this sec-
ion (assuming a trapezoidal or bitriangular form of distribution
unction f (B); ζi and m are the parameters determining the
hape and height of f (B), respectively; notations are given in
ig. 2) were chosen in the investigations on the stability of the
roposed algorithms (CONTIN and LAPLACE) used for the
valuation of MPSD from the adsorption data. The numerical
nvestigations were performed by applying both pure generated
nd disturbed with Gaussian noise (19, 77, 78) nitrogen ad-
orption isotherms. Analytical forms of the overall adsorption
sotherms (assuming the DA equation as a kernel) are presented
elow.

The Trapezoidal Representation of f (B)

f (B) =




�(ζb)

ζb − ζa
(B − ζa) ζa ≤ B < ζb

�(ζb) ζb ≤ B < ζc

�(ζb)

ζc − ζd
(B − ζd ) ζc ≤ B ≤ ζd

[42]

0 elsewhere.
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K13(p) = − ζ f y {exp[−ζe y] − exp[−ζ f y]}. [60]
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FIG. 2. The shapes of model functions: (a) (---) trapezoidal and (b) (—)
bi-triangle used for the representation of the f (B) distribution.

Normalization factor:

�(ζb) = 2

(ζd − ζa) + (ζc − ζb)
. [43]

Isotherm equation:

�(p) = K1(p) + K2(p) + K3(p) + K4(p) + K5(p), [44]

where

K1(p) = − �(ζb)

(ζb − ζa)
ζa y−1{exp[−ζa y] − exp[−ζb y]} [45]

K2(p) = �(ζb)

(ζc − ζd )
y−1{(ζc + y−1) exp[−ζc y] − (ζd + y−1)

× exp[−ζd y]} [46]

K3(p) = � (ζb) y−1{exp[−ζb y] − exp[−ζc y]} [47]

K4(p) = − � (ζb)

(ζc − ζd )
ζd y−1{exp[−ζc y] − exp[−ζd y]} [48]

K5(p) = �(ζb)

(ζb − ζa)
y−1{(ζa + y−1) exp[−ζa y]
− (ζb + y−1) exp[−ζb y]}. [49]
K ET AL.

The Bitriangular Representation of f (B)

f (B) =




�(ζb)

ζb − ζa
(B − ζa) ζa ≤ B < ζb

�(ζb)

ζb − ζc
(B − ζc) ζb ≤ B < ζc

�(ζb)

m(ζe − ζd )
(B − ζd ) ζd ≤ B < ζe

�(ζb)

m(ζe − ζ f )
(B − ζ f ) ζe ≤ B < ζ f

0 elsewhere.

[50]

Normalization factor:

�(ζb) = 1

0.5 · [(ζc − ζa) + m−1(ζ f − ζd )]
. [51]

Isotherm equation:

�(p) = K6(p) + K7(p) + K8(p) + K9(p) + K10(p)

+ K11(p) + K12(p) + K13(p), [52]

where

K6(p) = �(ζb)

(ζb − ζa)
y−1{(ζa + y−1) exp[−ζa y]

− (ζb + y−1) exp[−ζb y]} [53]

K7(p) = − �(ζb)

(ζb − ζa)
ζa y−1{exp[−ζa y] − exp[−ζb y]} [54]

K8(p) = �(ζb)

(ζb − ζc)
y−1{(ζb + y−1) exp[−ζb y]

− (ζc + y−1) exp[−ζc y]} [55]

K9(p) = − �(ζb)

(ζb − ζc)
ζc y−1(exp[−ζb y] − exp[−ζc y]) [56]

K10(p) = �(ζb)

m(ζe − ζd )
y−1{(ζd + y−1) exp[−ζd y]

− (ζe + y−1) exp[−ζe y]} [57]

K11(p) = − �(ζb)

m(ζe − ζd )
ζd y−1{exp[−ζd y] − exp[−ζe y]} [58]

K12(p) = �(ζb)

m(ζe − ζ f )
y−1{(ζe + y−1) exp[−ζe y]

− (ζ f + y−1) exp[−ζ f y]} [59]

�(ζb) −1
m(ζe − ζ f )



MICROPOROUS CARB

EXPERIMENTAL

Three commercial granulated activated carbons, D43/1
(Carbo-Tech, Essen, Germany), WD-extra, and AHD
(Hajnówka, Poland), extensively investigated elsewhere
(79–87), are the subject of this study. They were deashed
using the two-step acid treatment method proposed by Korver.
The detailed analysis of the procedure of deashing, as well as
the mechanism of this process, was studied previously (79).
Suspensions of the initial Polish carbons were strongly alkaline.
This is why before the application of acids, the carbons were
washed off with distilled water to obtain a neutral pH. After each
step of Korver’s method two carbon samples were obtained:
one was treated with concentrated HCl (D43/1 treated, WD
treated and AHD treated samples) and one was treated using
both concentrated HCl and HF (D43/1 pure, WD pure, AHD
pure). Finally, the carbons were washed using distilled water
so that the conductivity of the suspension reached a value close
to that of distilled water. Nitrogen adsorption isotherms were
measured using a Micromeritics ASAP 2010 analyzer.

RESULTS AND DISCUSSION

First, the stability of both CONTIN and LAPLACE algo-
rithms was investigated using generated (pure and disturbed

FIG. 3. Generated initial (TR) and disturbed with Gaussian error (points)
nitrogen adsorption isotherms. The theoretical isotherms were obtained
on the values of parameters: (A) ςa = 0.0001, ςb = 0.0009, ςc = 0.001,
ςd = 0.002, ςe = 0.003, ς f = 0.006, m = 0.5 (Eq. [52]). (B) ςa = 0.0002,
ςb = 0.0003, ςc = 0.001, ςd = 0.0055, ςe = 0.0063, ς f = 0.007, m = 0.5
(Eq. [52]). (C) ςa = 0.001, ςb = 0.003, ςc = 0.005, ςd = 0.0055, ςe = 0.006,

ς f = 0.007, m = 0.5 (Eq. [52]). (D) ςa = 0.001, ςb = 0.0025, ςc = 0.003,
ςd = 0.0045 (Eq. [44]).
ON HETEROGENEITY 385

FIG. 4. The recovering results of pure nitrogen adsorption isotherms drawn
in Fig. 3 as lines (bar theoretical f (B), solid line (—) CONTIN algorithm, and
dashed line (---) LAPLACE algorithm (ω = 3)).

with Gaussian errors) isotherms of adsorption in micropores.
Four nitrogen isotherms were generated based on Eqs. [44] and
[52] (see Fig. 3 caption for details) and then they were dis-
turbed with Gaussian errors by the Box and Muller method

FIG. 5. The recovering results of disturbed with Gaussian error nitrogen

adsorption isotherms drawn in Fig. 3 as points (bar theoretical f (B), solid line
(—) CONTIN algorithm, and dashed line (---) LAPLACE algorithm (ω = 3)).
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FIG. 6. The recovering results of pure nitrogen adsorption isotherms gener-
ated basing on the results presented in Fig. 4 (Eq. [11]) (bar theoretical MPSD,
solid line (—) CONTIN algorithm, and dashed line (---) LAPLACE algorithm
(ω = 3)).

FIG. 7. The recovering results of disturbed with Gaussian error nitrogen
adsorption isotherms generated basing on the results presented in Fig. 5 (Eq. [11])

(bar theoretical MPSD, solid line (—) CONTIN algorithm, and dashed line (---)
LAPLACE algorithm (ω = 3)).
K ET AL.

(19, 77, 78). Obviously, due to the thermodynamic inconsis-
tency of Dubinin’s theory (9, 22, 23) the generated isotherms
do not obey the Henry’s law limit. As shown in Fig. 3, they
differ significantly one from the other, especially in the low-
pressure range. From Figs. 4–6 it arises that both the CONTIN
and LAPLACE algorithms recover mono- and bimodal f (B),
as well as MPSD curves, reasonably well. The LAPLACE algo-
rithm reproduces peaks that are narrower and higher than real

FIG. 8. (A) Low temperature (77.5 K) nitrogen adsorption—desorption

isotherms for the AHD, D43/1 and WD activated carbons. (B) Results of fitting
JCh equation (lines; Eq. [25]) to adsorption data (symbols).
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FIG. 9. Distributions of structural DR parameter f (B) for selected unmodified and modified activated carbons (bar CONTIN algorithm, solid line (—)

LAPLACE algorithm with ω = 10, dashed line (---) LAPLACE algorithm with ω

ones as well as than those obtained by means of the CONTIN al-
gorithm. In the case of isotherms disturbed with Gaussian errors,
the CONTIN algorithm reproduces the PSD peaks character-
ized by similar positions but greater variances than true MPSD
(Fig. 7); however, the difference found can be reduced by addi-
tional variation of the regularization parameter in CONTIN. On
the other hand, the LAPLACE algorithm preserves both posi-
tions and variances of generated peaks. In this case, the algorithm
generates narrower and higher curves than true MPSD, but the
obtained solutions seem to be very stable and free from Gaussian
errors.
Second, the properties of the samples of microporous
activated carbons (initial, treated, and pure) are investigated by
= 5, and circles (• • •) LAPLACE algorithm with (ω = 3)).

all methods and algorithms mentioned above. Experimental ni-
trogen adsorption isotherms measured at 77.5 K are shown in
Fig. 8A. It should be noted that all isotherms possess very similar
shapes and are characterized by a narrow adsorption hysteresis
loop (i.e., the mesoporosity and external surface are small)
(79). Chemical processes such as treatment with concentrated
HCl and HF influence only the adsorption capacity of modified
samples of investigated adsorbents. Since the shape of nitrogen
adsorption isotherms for unmodified and modified samples are
very similar, one can expect that these processes mainly influ-
ence the chemical surface topography and do not influence the

structure of pores (79). Comparison of the distributions of the
structural parameter f (B) and the MPSDs obtained by means



388 KOWALCZYK ET AL.
FIG. 10. Distributions of pore half-width for selected unmodified and modifie
with ω = 10, dashed line (---) LAPLACE algorithm with ω = 5, and circles (• •

of the CONTIN and LAPLACE algorithms for all investigated
samples of activated carbons are presented in Figs. 9 and 10,
respectively. Both algorithms generate monomodal f (B) and
MPSD. At first sight, all samples are characterized by very simi-
lar microporosity, and the pores are grouped generally in the
range from 0.4 to 0.65 nm (for micropore half-width). For
each sample, the LAPLACE algorithm reduces the assumed
biporous structure of micropores to one peak. The parameter
ω, influencing mainly the dispersion of base functions (see Eq.
[18]), does not drastically affect received results (see Figs. 9
and 10). Note that the best correlation between the LAPLACE

and CONTIN algorithms was obtained at ω = 10. Final results
are summarized in Table 1.
d activated carbons (bar CONTIN algorithm, solid line (—) LAPLACE algorithm
•) LAPLACE algorithm with (ω = 3)).

The results obtained using the DFT and ND methods are simi-
lar (see Figs. 11 and 12 and Table 2). Both methods suggest
a bimodal structure of pores and indicate that chemical treat-
ment does not significantly influence the pore structure of tested
samples. But one should notice that the method proposed by
Nguyen and Do slightly shifts the average dimension of pores
to higher diameters (see Table 2) (35).

Another important conclusion is that HK results approximate
DFT ones reasonably well (see Table 2 and Figs. 11 and 13). This
method generates exponentially decreasing curves for all the
examined samples of activated carbons, and like other methods

it shows little difference in the pore structure of all investigated
carbons.
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TABLE 1
Structural Parameters Describing PSDs and MPSDs for All Investigated Samples of Activated Carbons: LAPLACE—New Algorithm

Projected for Solution of Integral Adsorption Equation with DR or DA Equation as a Kernel, CONTIN—Provencher’s Algorithms
Modified to the Solution of Integral Adsorption Equations with DR Equation as a Kernel

WD AHD D43/1
Pore half-width

Method ω range � nm Para. initial treated pure initial treated pure initial treated pure

LAPLACE 3 � < 1.0 � 1.00 1.00 1.00 1.00 0.98 0.99 1.01 1.01 0.98
ς̄ , nm 0.51 0.52 0.48 0.54 0.53 0.54 0.51 0.50 0.50
δ 8.0e-3 9.1e-3 7.6e-3 9.8e-3 9.1e-3 9.7e-3 8.6e-3 8.4e-3 8.4e-3
σ 0.09 0.10 0.09 0.09 0.09 0.10 0.09 0.09 0.09
χ 3.1e-4 3.3e-4 2.6e-4 3.7e-4 3.1e-4 3.4e-4 3.1e-4 3.0e-4 2.9e-4

5 � < 1.0 � 1.00 1.00 0.99 0.98 0.98 1.00 1.00 1.01 0.97
ς̄ , nm 0.51 0.52 0.48 0.54 0.53 0.54 0.50 0.50 0.49
δ 3.8e-3 4.4e-3 3.7e-3 4.5e-3 4.3e-3 4.7e-3 4.1e-3 4.0e-3 3.9e-3
σ 0.06 0.06 0.06 0.07 0.07 0.07 0.06 0.06 0.06
χ 4.2e-5 3.6e-5 2.9e-5 4.6e-5 3.9e-5 4.1e-5 3.4e-5 3.4e-5 3.1e-5

10 � < 1.0 � 0.64 0.89 0.63 0.79 0.66 1.01 1.00 1.02 0.97
ς̄ , nm 0.53 0.55 0.55 0.56 0.58 0.54 0.50 0.50 0.51
δ 1.3e-3 1.4e-3 1.4e-3 1.5e-3 1.6e-3 1.4e-3 1.2e-3 1.2e-3 1.1e-3
σ 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03
χ −2.7e-6 −3.0e-6 −2.9e-6 −1.0e-7 −5.2e-7 −2.7e-6 −2.2e-6 −2.1e-6 −8.3e-7

CONTIN 0.4 < � < 0.7 � 1.02 1.03 1.06 1.01 1.04 1.03 1.02 1.03 1.00
ς̄ , nm 0.53 0.55 0.55 0.56 0.58 0.57 0.52 0.54 0.53
δ 2.6e-3 2.2e-3 1.4e-3 2.3e-3 1.9e-3 2.1e-3 2.8e-3 1.9e-3 2.7e-3
σ 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.05
χ −2.9e-5 −1.7e-5 −7.8e-6 −1.3e-5 −1.0e-5 −4.7e-6 −2.9e-5 −1.4e-5 −2.8e-5

TABLE 2
Structural Parameters Describing PSDs and MPSDs for All Investigated Samples of Activated Carbons: DFT—Density Functional

Theory, ND—Nguyen and Do Method, HK—Horvath and Kawazoe Equation

WD AHD D43/1
Pore half-width

Method range � nm Para. initial treated pure initial treated pure initial treated pure

DFT � < 0.5 � 0.41 0.13 0.44 0.09 0.20 0.12 0.44 0.45 0.35
ς̄ , nm 0.37 0.42 0.38 0.40 0.39 0.40 0.37 0.33 0.36
δ 6.7e-4 1.8e-4 5.8e-4 5.1e-4 5.0e-4 5.1e-4 6.6e-4 3.2e-3 3.8e-4
σ 0.03 0.01 0.02 0.02 0.02 0.02 0.03 0.06 0.02
χ 1.5e-5 −3.6e-7 3.7e-6 −1.8e-6 7.5e-8 −2.1e-6 1.5e-5 9.2e-5 4.0e-6

0.5 < � < 2 � 0.45 0.62 0.41 0.54 0.50 0.56 0.50 0.48 0.56
ς̄ , nm 0.87 0.87 0.87 0.93 0.87 0.90 0.81 0.78 0.85
δ 9.6e-2 8.5e-2 9.5e-2 1.0e-1 9.1e-2 9.4e-2 6.6e-2 5.0e-2 6.3e-2
σ 0.31 0.29 0.31 0.32 0.30 0.31 0.26 0.22 0.25
χ 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.02

ND � < 0.7 � 0.25 0.31 0.31 0.29 0.31 0.31 0.29 0.26 0.25
ς̄ , nm 0.47 0.47 0.47 0.48 0.47 0.47 0.46 0.47 0.46
δ 5.5e-4 2.5e-4 2.5e-4 2.5e-3 2.6e-4 4.7e-4 6.4e-4 2.9e-4 3.9e-3
σ 0.02 0.02 0.02 0.05 0.02 0.02 0.03 0.02 0.02
χ 1.4e-5 1.1e-6 1.1e-6 3.1e-4 8.6e-9 9.4e-6 1.0e-5 4.8e-6 1.1e-5

0.5 < � < 2.5 � 0.17 0.26 0.26 0.22 0.25 0.30 0.18 0.18 0.19
ς̄ , nm 1.10 1.08 1.08 1.16 1.11 1.08 0.96 0.97 0.95
δ 0.16 0.15 0.15 0.12 0.15 0.13 0.10 0.14 0.10
σ 0.40 0.39 0.39 0.35 0.39 0.36 0.32 0.38 0.32
χ 0.05 0.06 0.06 0.04 0.05 0.04 0.05 0.10 0.05

HK 0.2 < � < 0.9 � 0.90 0.91 1.02 0.89 0.99 0.89 0.82 0.97 0.93
ς̄ , nm 0.38 0.40 0.36 0.40 0.38 0.41 0.40 0.37 0.39
δ 2.3e-2 2.5e-2 2.2e-2 2.6e-2 2.4e-2 2.6e-2 2.3e-2 2.3e-2 2.5e-2
σ 0.15 0.16 0.15 0.16 0.16 0.16 0.15 0.15 0.16

χ 4.4e-3 4.1e-3 4.7e-3 4.3e-3 2.5e-3 4.2e-3 3.9e-3 4.4e-3 4.3e-3
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FIG. 11. DFT pore size distributions for selected unmodified and

The comparison of experimental and theoretical (i.e., obtained
by fitting of the JCh equation to experimental data) nitrogen ad-
sorption isotherms in the micropore region is depicted in Fig. 8B.
For the fitting of the JCh equation to the measured data, the novel
hybrid algorithm (i.e., consisting of the evolutionary algorithm
(EVOL) (60) and the simplex method proposed by Nelder and
Mead) (78) was applied. In contrast to classical optimization
methods such algorithms are resistant to local extremes. The ob-
ned results show that despite good fitting of theoretical data to excluding WD carbons, an additional peak responsible for

experimental ones the obtained parameters of the JCh equation

TABLE 3
Parameters of JCh Equation Obtained for All Tested Samples of Activated Carbons

WD AHD D43/1

Parameter initial treated pure initial treated pure initial treated pure

W0 cm3/g 0.36 0.50 0.39 0.42 0.46 0.53 0.42 0.44 0.39
ρ 2.3e10 1.6e10 3.5e11 9.9e9 6.7e10 1.7e10 5.3e9 3.8e10 1.0e10
ν 1.6e7 1.5e7 1.9e7 2.6e7 2.2e7 2.3e7 1.3e7 2.5e7 2.4e7
n 2.35 2.29 3.18 1.97 2.64 2.19 1.95 2.38 1.96

formation of the monolayer in micropores is visibly located close
D 3.3e-3 1.0e-2 1.7e-2 4.3e-3
odified activated carbons (only the range of micropores is shown).

both do not possess physical meaning and do not generate the
MPSD (see Table 3).

The APDs for the all examined carbons are presented in
Fig. 14. All curves possess very similar shapes. They are charac-
terized by at least two distinct peaks observed around 8 kJ/mol
and 2 kJ/mol. It is known that the first peak is responsible for one
stage micropore filling lower than monolayer, and the second
is related to the secondary micropore filling. For all samples,
1.6e-2 9.6e-3 2.6e-3 7.5e-3 1.2e-2
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TABLE 4
Energetic Parameters Describing AEDs for All Investigated Samples of Activated Carbons: FG—Solution of Adsorption Integral

Equation with Fowler–Guggenheim Equation as a Kernel

WD AHD D43/1
Adsorption energy

Method range � kJ/mol Para. initial treated pure initial treated pure initial treated pure

FG � < 8 � 0.39 0.39 0.30 0.44 0.37 0.44 0.11 0.41 0.37
ς̄ , kJ/mol 5.06 4.91 4.74 5.09 4.80 5.11 3.97 5.17 5.01
δ 0.85 0.70 0.54 0.89 0.59 0.88 0.09 0.92 0.73
σ 0.92 0.84 0.74 0.94 0.77 0.94 0.30 0.96 0.86
χ 0.21 0.15 0.06 0.24 0.09 0.23 −0.01 0.23 0.05

8 < � < 12 � 0.31 0.31 0.28 0.35 0.31 0.35 0.24 0.37 0.24
ς̄ , kJ/mol 8.99 8.53 7.77 9.26 8.09 9.14 8.55 9.37 7.95
δ 1.01 0.88 0.64 1.19 0.74 1.05 0.64 1.00 0.68
σ 1.00 0.94 0.80 1.09 0.86 1.02 0.80 1.00 0.82
χ −0.07 0.01 0.03 −0.12 0.05 −0.07 −0.07 −0.03 0.18

12 < � < 16 � 0.48 0.53 0.62 0.39 0.54 0.41 0.50 0.43 0.58
ς̄ , kJ/mol 12.78 12.30 12.06 12.92 12.15 12.74 12.87 13.17 12.53
δ 0.91 0.83 0.47 0.96 0.51 0.84 1.67 0.68 1.48
σ 0.95 0.91 0.68 0.98 0.72 0.92 1.29 0.83 1.22
χ −0.04 −0.04 −0.03 0.15 −0.04 0.05 0.60 −0.10 −0.33
FIG. 12. Pore size distributions for selected unmodified and modified activated carbons obtained on the basis Nguyen and Do method (only the range of
micropores is shown).
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FIG. 14. APD
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APD curves, and is still present on AE distributions. Thus, de-
FIG. 13. HK MPSDs for selected unm
s for selected unmodified and modified activated carbons.
odified and modified activated carbons.

to 6 kJ/mole. Thus, the shapes of the obtained distributions sug-
gest, as pointed out by Gun’ko and Do (35), that each of the
investigated samples of activated carbons is microporous and is
characterized by a small quantity of mesopores.

The AEDs obtained using the Fowler–Guggenheim equation
as a kernel of the integral Fredholm equation with respect to the
adsorption energy for all the investigated carbons are compared
in Fig. 15. First of all, this method is more practical than APDs.
The peaks are strongly marked, and what is also important, the
limits of the energy are finite (at p/p0→0 and/or p/p0→1).
Both the adsorption energy range and the shape (three modals)
of AEDs for tested samples of activated carbons are very similar.
Comparing the obtained PSDs as well as APD and AED curves,
one can conclude that obtained materials are structurally as well
as energetically heterogeneous. Comparing energy distributions
(Figs. 14 and 15 and Table 4) it can be seen that despite the shift
of both distributions along the energy axis (caused by the entropy
term) the peaks on AEDs are clearly visible and can be easier
distinguished than on APD curves. What is more important, the
peak close to 6 kJ/mol for WD carbon is practically invisible on
spite the simplicity of calculation of APDs, the AED curves are
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FIG. 15. Adsorption energy distributions for selected unmodified a

what is clearly visible on the APD as well as AED curves. The
more sensitive to the changes in the structure of adsorbents. The
interpretation of the position of energy peaks obtained from the
method studied was recently studied by Puziy and co-workers
(46). It was established that the peak in the range of 8 kJ/mol
is attributed to interaction between the nitrogen molecules and
the basal planes of graphitic microcrystallites (i.e., the forma-
tion of monolayer on the walls of wider micropores). The peak
at 5 kJ/mol is attributed to secondary micropore filling on poly-
molecular adsorption (nitrogen liquefaction heat 5.6 kJ/mol).
One can, however, pay back attention to the intensity of each
peak. And thus, during the chemical modification of initial sam-
ples of activated carbons, the intensity of the high-energy peak,
attributed to the presence of micropores (E ≈ 〈12, 13〉 kJ/mol),
changes significantly (Table 4).

CONCLUSIONS

The presented study deals with the methods of characteriza-
tion of structural and energetic heterogeneity of microporous
ons. Different methods are compared and a new one called
nd modified activated carbons computed with (Eqs. [35 and 36]).

LAPLACE is proposed. The SGA algorithm is modified and ap-
plied for this purpose. The power of the CONTIN and LAPLACE
algorithms was checked. It is shown that both methods recover
mono- and bimodal f (B), as well as MPSD curves, reasonably
well. The main advantage of LAPLACE is that the obtained so-
lutions seem to be very stable and free from Gaussian errors.
Moreover, the LAPLACE procedure is simpler and quicker than
CONTIN. The fit of the experimental data by the LAPLACE
algorithm leads to a very good correlation between this method
and CONTIN, and the best fit is obtained for the parameter
ω = 10. Therefore LAPLACE can be successfully applied to the
characterization of microporous solids.

The method proposed by Nguyen and Do leads to almost the
same results as obtained from DFT theory; however, the ND
method slightly shifts the average dimension of pores to higher
diameters. The HK method leads to average pore diameters simi-
lar to those found by the DFT method. The process of deashing of
carbons changes the energetic heterogeneity of studied carbons,
AED seems to lead to more realistic results than APD does;
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however, to check the reality of the results of both methods the
comparison with calorimetric measurements of the enthalpy of
adsorption is necessary to be carried out. This problem will be
studied in the near future.

REFERENCES
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