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We study the applicability of the semiclassical Feynman and Hibbs (FH) (second-order or

fourth-order) effective potentials to the description of the thermodynamic properties of quantum

fluids at finite temperatures. First, we use path integral Monte Carlo (PIMC) simulations to

estimate the thermodynamic/static properties of our model quantum fluid, i.e. low-density 4He at

10 K. With PIMC we obtain the experimental equation of state, the single-particle mean kinetic

energy, the single-particle density matrix and the single-particle momentum distribution of this

system at low densities. We show that our PIMC results are in full agreement with experimental

data obtained with deep inelastic neutron scattering at high momentum transfers (D. Colognesi,

C. Andreani, R. Senesi, Europhys. Lett., 2000, 50, 202). As expected, in this region of the 4He

phase diagram, quantum effects modify the width of the single-particle momentum distribution

but do not alter its Gaussian shape. Knowing the exact values of density, pressure and

single-particle mean kinetic energy for our model quantum fluid, we investigate the limitations

of the semiclassical FH effective potentials. We show that commonly used ‘short-time’

approximations to the high-temperature density matrix due to Feynman and Hibbs can only be

applied in a very limited range of the 4He phase diagram. We found that FH effective potentials

reproduce the experimental densities of 4He at 10 K for L/a o 0.45 (L = 2.73 Å denotes the

thermal de Broglie wavelength, a = r�1/3 is the mean nearest-neighbor distance in the fluid and

r denotes fluid density). Moreover, semiclassical FH effective potentials are able to correctly

predict the single-particle mean kinetic energy of 4He at 10 K in a very limited range of fluid

densities, i.e. L/a o 0.17. We show that the ad hoc application of the semiclassical FH effective

potentials for the calculation of the thermodynamic properties of dense liquid-like para-hydrogen

(para-H2) adsorbed in nanoporous materials below 72 K is questionable.

I. Introduction

There has been tremendous interest in the storage of quantum

fluids, particularly molecular hydrogen, in nanoporous

materials at finite temperatures.1–6 Moreover, nanoporous

membranes have been suggested as potential quantum filters

for efficient separation of hydrogen isotopes at cryogenic

temperatures.7–10 Nevertheless, the correct description of the

static and thermodynamic properties of low-dimensional

quantum fluids (i.e. quantum fluids adsorbed in pores of

molecular sizes) is challenging and interesting from the point

of view of fundamental physics. In a series of papers, both

second- and fourth-order semiclassical FH ‘short-time’

approximations to the high-temperature density matrix have

been recently used for the ad hoc description of thermo-

dynamic and transport properties of dense quantum fluids

adsorbed in nanoporous materials, for example, H2 adsorbed

in metal–organic frameworks at 40 K,11 molecular hydrogen

and deuterium adsorbed in zeolite Rho II at temperatures

down to 30–40 K,12,13 etc. Clearly, semiclassical FH effective

potentials are only approximations to the high-temperature

density matrix. Thus, the limitations of these semiclassical

methods used for simulation of quantum fluids at finite

temperatures are important from both theoretical and practical

points of view. According to Sesé’s14,15 path integral Monte

Carlo (PIMC) studies, the second-order FH effective potential

can be used when the reduced de Broglie thermal wavelength,

L* � h/(2pmkBTs
2)1/2 r 0.5 (here, m denotes the mass of the

quantum particle, kB is the Boltzmann constant, T denotes

temperature and s is the collision diameter of the quantum

particle). Note that L* is a function of temperature but not of

the bulk or confined quantum fluid density. For 4He at 10.2 K,

L* = 1.07 (i.e., L D s), and one can expect that semiclassical

FH effective potentials cannot be applied for the calculation of
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the static and thermodynamic properties of this fluid. Clearly,

this assumption is incorrect since quantum effects depend on

the fluid density, i.e. L/a (ratio of the thermal de Broglie

wavelength to the mean nearest-neighbor distance in the fluid).

To investigate the limitations of the semiclassical FH effective

potentials, we combine Feynman’s path integral method with

experimental data of low-density 4He at 10.2 K.

Of all quantum liquids, 4He is the most common and

characteristic one.16,17 It is, therefore, an ideal system for

investigating the microscopic origin of quantum effects and for

doing comparisons between experiments and theory.17–20

Regarding static properties, Ceperley et al.,21 Brualla et al.22

and Mazzanti et al.23 showed that the single-particle momentum

distribution of liquid 4He (for clarity, throughout the article we

omit the term ‘single-particle’) deviates from the Gaussian one at

sufficiently low temperatures. This effect has been studied using

PIMC simulations. The kinetic energy of low temperature

liquids cannot be predicted using the Maxwellian kinetic theory

of gases, since the kinetic energy is the second moment of the

momentum distribution and in the Maxwellian theory this

distribution is assumed to be Gaussian. It has been shown that

the kinetic energy of liquid 4He is always greater than 3kBT/2

(kB denotes Boltzmann constant and T is the measured

temperature) because of the confining effects of the hard cores.

Static and thermodynamic properties of supercritical 4He at

low densities have received less attention in comparison to

normal or superfluid phases. In relation to supercritical 4He, it

is worth mentioning the work of Colognesi et al.,24 in

which they experimentally determined the kinetic energy of
4He along two low-density isochores (r = 10.35 nm�3 and

r = 13.8 nm�3) in the temperature range between 5 and 30 K.

They concluded that supercritical 4He retains its quantum

character even at very low densities.

In the current work, we study the applicability of the semi-

classical FH (second-order or fourth-order) effective potentials to

the description of the thermodynamic properties of quantum

fluids at finite temperatures. We want to underline that we treated

low-density 4He at 10 K as a well-known, model quantum fluid.

Thus, as we show later, our simulation results can be applicable

for any other quantum fluids of industrial importance

(i.e. molecular hydrogen, neon, xenon and others). From PIMC

simulations, we determine the equation of state, the mean kinetic

energy, the density matrix and the momentum distribution of 4He

at 10 K and pressures up to 2.5 MPa (equivalent bulk density of
4He up to 30 mmol cm�3). We show that PIMC simulations

predict a linear increase in the mean kinetic energy with the

density in the studied regime. Moreover, the predicted mean

kinetic energy of low-density 4He at 10 K is in excellent agreement

with the experiment mentioned above, where the results were

obtained from deep inelastic neutron scattering experiments at

high momentum transfer.24 Knowing the exact values of density,

pressure andmean kinetic energy for our model quantum fluid, we

investigate the limitations of the semiclassical FH approximations

to the high-temperature density matrix. We found that semiclassical

FH effective potentials reproduce the experimental densities of
4He at 10 K for L/a o 0.45. Furthermore, FH effective

potentials are able to reproduce the mean kinetic energy of

studied 4He only in a very limited range of fluid densities,

i.e. L/a o 0.17. The density of para-H2 adsorbed in carbon

nanotubes and other nanoporous materials at cryogenic

temperatures reached 50 mmol cm�3 (see ref. 10). In the current

study, we predict that FH effective potentials give reliable esti-

mations of para-H2 density at temperatures greater than 72 K

(i.e. L/ao 0.45), whereas to reproduce the mean kinetic energy

of dense liquid-like para-H2, the temperatures should exceed

510 K (i.e. L/a o 0.17). This simple example lightly shows the

limitations of the semiclassical FH effective potentials.

II. Computational details

II.1 Path integral Monte Carlo simulation

We performed all PIMC simulations in the canonical ensemble.

In the path integral formalism, each atom is mapped onto an

equivalent polymer chain or ‘necklace’ of P classical ‘beads’

r(1)i , r(2)i ,. . ., r(P)i .25–27 The vector r denotes the position of a

bead belonging to the ith atom. In our simulations we have

used the primitive action, given by ref. 14, 15 and 27,

W ¼ mP

2b2�h2
XN
i¼1

XP
a¼1
ðrðaÞi � r

ðaþ1Þ
i Þ2 þ 1

P

X
ioj

XP
a¼1

VðrðaÞij Þ; ð1Þ

where N is the number of atoms, b = (kBT)
�1 is the inverse of

the temperature and �h is Planck’s constant divided by 2p. Owing

to the cyclic condition of the polymer chains, if a = P, then

a + 1 = 1. The interaction potential between helium atoms,

V(r), is HFD-B2 He(4), taken from Aziz et al.28 We found that

for low-density 4He at 10 K the necessary number of beads per

atom was 32 in order to correctly reproduce the experimental

equation of state and the mean kinetic energy (see Fig. 1). The

temperature that we study is above the l temperature, and thus

exchange effects may be neglected (see ref. 29–36).

The mean kinetic energy has been estimated using the virial

estimator given by ref. 21–23,

K ¼ 3

2
T þ 1

2PN

XN
i¼1

XP
a¼1
ðrðaÞi � RCM;iÞ �

@VðrðaÞi Þ
@r
ðaÞ
i

ð2Þ

where RCM,i denotes the centroid position of the ith closed

polymer chain.

Fig. 1 Variation of the kinetic energy of 4He, quantized by different

numbers of beads. Note that for low-density 4He at 10 K, the virial

estimator for kinetic energy converges as P = 32.
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On the other hand, the single particle density matrix is

defined as21

n(r) = Z�1
R
dr1dr2. . .drPhr1,r2,. . .,rP|exp(�bH)|r1

+ r,r2 + r,. . .,rP + ri (3)

where Z denotes the partition function andH is the Hamiltonian

of the system. From eqn (3), we notice that the off-diagonal

part of the density matrix is required. In the polymer

isomorphism language, off-diagonal terms imply open chains.

We achieved an efficient sampling of the density matrix using

the ‘trail method’ introduced by Brualla et al.21

The single-particle momentum distribution is defined as the

Fourier transform of the single-particle density matrix,21–23

nðkÞ ¼ 1

ð2pÞ3r

Z
expð�ik � rÞnðrÞdr ð4Þ

where r is the density of the system and k is the reciprocal

lattice vector. The normalization of the momentum distribution

is given by
R
d3kn(k) = 1. Within the framework of information

exchange with experimentalists, the Compton profile becomes

relevant, being the observable measured in neutron scattering

experiments. At sufficiently high momentum transfer, the

impulse approximation holds because the neutron scatters

from single atoms. Under the impulse approximation,

the Compton profile is defined in terms of the momentum

distribution as,21–23

JIAðYÞ ¼
1

4p2r

Z1

Yj j

knðkÞdk ð5Þ

with

Y ¼ m

q
o� q2

2m

� �
ð6Þ

where q and o are the momentum and energy transferred from

the neutron to the sample and m denotes the mass of a 4He

atom. In PIMC simulations, the single-particle Compton

profile is obtained by integration of the single-particle

momentum distribution.

In order to see how quantum fluctuations affect both the

momentum distribution and the Compton profile, we

compared PIMC results with predictions from the classical

Maxwellian theory. The classical momentum distribution is

given by ref. 21–23,

nCðkÞ ¼ A exp � l
T
k2

� �
ð7Þ

A ¼ 8rðplÞ3=2

T3=2
ð8Þ

where l = �h2/2m.

Under the assumptions of the impulse approximation, the

classical Compton profile can be calculated from ref. 21–23,

JCðyÞ ¼ ð2ps2Þ�1=2 exp �
y2

2s2

� �
ð9Þ

where s is obtained by means of the kinetic energy,21–23

hKi ¼ 3

2

ð�hsÞ2

m
ð10Þ

Clearly, in the zero-density limit, eqn (4)–(6) are reduced to

their classical counterparts, i.e. eqn (7)–(10).

The evolution of the system has been performed using a

combination of bead-per-bead sampling, the bisection

method, and displacements of the centroid of each polymer

chain.21–23 The acceptance of the bead-per-bead sampling was

set as equal to 10%. Each simulation consisted of 4 � 107

Monte Carlo steps, of which the first 1.5 � 107 were discarded

in order to guarantee equilibration. The stability of the results

was confirmed by additional longer runs of 6 � 107 Monte

Carlo steps, with the equilibrium averages for 4He fully

reproducible.

II.2 Feynman–Hibbs effective potentials

All Monte Carlo (MC) simulations have been performed in the

canonical (N,V,T) ensemble. The interaction potential between
4He atoms was also HFD-B2 He(4).28 In total, we have

performed two different kinds of MC simulations. First, we

have done a classical simulation. Secondly, we have done two

kinds of simulations using quantum-corrected versions of the

interaction potential. These quantum corrections have been

introduced by means of the second-order and fourth-order

Feynman–Hibbs effective potentials, respectively,12–15,25,26

WFHðrÞ ¼ VðrÞ þ b�h2

24m
V 00ðrÞ þ 2V 0ðrÞ

r

� �� �
Yðrcut � rÞ

ð11Þ

WFHðrÞ ¼ VðrÞ þ b�h2

24m
V 00ðrÞ þ 2V 0ðrÞ

r

� ��

þ b2�h4

1152m2
15V 0ðrÞ

r3
þ 4V 000ðrÞ

r
þ V 0000ðrÞ

� ��
Yðrcut� rÞ

ð12Þ

where the prime, double prime, etc. denote the first, second,

and higher order derivatives of the HFD-B2 He(4) classical

potential with respect to r, m = m/2 is the reduced mass of a

pair of interacting 4He atoms, rcut is the intermolecular cut-off

distance and Y is the Heaviside function. The number of

atoms used in all MC simulations has ranged from 64 up to

300, using higher numbers for systems with higher densities.

The intermolecular cut-off distance was set as equal to 5sff
(sff = 2.556 Å). We performed a series of simulations for the

longer cut-off distance of 7sff. The computed static and

thermodynamic properties of 4He at the operating conditions

were within the error of molecular simulations for both

intermolecular cut-off distances. Each simulation consisted

of 4 � 107 Monte Carlo steps, of which the first 1.5 � 107

were discarded in order to guarantee equilibration. The

stability of the results was confirmed by additional longer

runs of 6 � 107 Monte Carlo steps, with the equilibrium

averages for 4He fully reproducible.
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III. Results and discussions

Before we consider the limitations of the semiclassical FH

effective potentials, we discuss the PIMC results in close

relation to the experimental measurements. In Fig. 1, we

present the variation of kinetic energy of 4He versus the

number of beads quantizing 4He atoms. Statistical uncertain-

ties in all plots are omitted since the error bars are smaller than

symbol size. The convergence of the kinetic energy is achieved

for P = 32. In Fig. 2 we show the variation of density of 4He

over the pressure range up to 2.5 MPa. Despite the fact that
4He above the l transition can be treated as a Boltzmann fluid,

it still exhibits some of the hallmarks of a quantum fluid. The

departure from the classical regime as the temperature lowers

can be explained with the delocalization of the 4He atoms. In

the PIMC formalism, this delocalization is represented by the

swelling of the polymer ring.27 We found that in the explored

region of the 4He phase diagram, the average gyration radius

of polymer rings does not depend on pressure, i.e. hRgi= 0.5 Å,

where hRgi � ð1=PÞ
PP
a¼1

r
ðaÞ
i � RCM;i

��� ���
� �

and RCM,i denotes

the centroid position of the ith closed polymer chain. As

expected, Rg D l/2, where l � (b�h2/m)1/2 = 1.0 Å for free
4He at 10 K. Further, the volume of a classical 4He atom is

approximately (4/3)p(1.278 Å)3 = 8.7 Å3, whereas the effective

volume of a polymer ring quantizing a 4He atom at 10 K and

pressures up to 2.5 MPa computed fromMonte Carlo integration

is around 13.9 Å3. Quantum delocalization increases the

effective volume of the 4He atom by approximately 60%

(see movie 1 in ESIw). At very low densities, the mean kinetic

energy values estimated by our PIMC simulations approach

the classical limit, i.e. K - (3/2)kBT. Moreover, we observe a

linear increase in the mean kinetic energy with increasing

helium density. This linear dependence derives from the

low-density range of 4He studied here. At pressures over 0.5 MPa

we observe a deviation of the classical equation of state from

the experimental data. The linear variation of the mean kinetic

energy with density, as well as the fact that the mean quantum

kinetic energy of 4He is ca. 48% larger than its classical

counterpart at 2.5 MPa, suggest that our quantum fluid can

be treated as a classical one at higher effective temperatures.

Indeed, the momentum distributions of 4He at 10 K,

computed from the PIMC simulations, show a gradual

modification of the width of the Maxwellian, depending on

density. However, in the regime explored, quantum effects

were not strong enough to deviate the momentum distribution

from a Gaussian one, as it can be seen in Fig. 3. Therefore, we

are allowed to fit the true quantum momentum distribution

with a classical one computed at a higher effective temperature,

as is displayed in Fig. 3. The effective temperature is obtained

from Teff = hKi(2/3)kB�1, where hKi is estimated from a

PIMC simulation.

Now, we pay attention to the description of the experimental

and PIMC results by semiclassical FH effective potentials.

Note that our PIMC simulations correctly reproduce the

thermodynamic and static properties of 4He at the studied

operating conditions. Moreover, in the considered range of the
4He phase diagram, classical 4He fluid (i.e. the limit of the

infinite dilution) gradually transforms to a quantum one with

increasing fluid pressure. That is why our model quantum fluid

is perfect for the exploring of the limitations of the semiclassical

FH effective potentials. If quantum effects are completely

neglected, a strong attraction between classical 4He atoms

appears and an artificial phase transition above the critical

point of 4He is observed, as it is shown in Fig. 2. Interestingly,

the low-order semiclassical FH quantum correction (second- or

fourth-order) introduced to the classical HFD-B2 He(4)

potential in the MC simulations produce only a slight

improvement of the description of the equation of state,

Fig. 2 Equation of state (left panel) and mean kinetic energy of 4He (right panel) as a function of density at T = 10 K. Experimental data—solid

line, classical MC simulations—open triangles, low-order semiclassical FH effective potential—open circles, PIMC simulations—open squares.

Additionally, filled triangles on the right panel are taken from deep inelastic scattering experiments at high momentum transfers.24
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compared to purely classical theory. As can be seen in Fig. 2,

above 0.7 MPa the semiclassical FH effective potentials gra-

dually deviate from the experimental data. As we found from

Fig. 2, this is a consequence of an underestimation of the mean

kinetic energy. We found that semiclassical FH effective

potentials reproduce the experimental densities of 4He at 10

K for L/a o 0.45 (L � h/(2pmkBT)
1/2 = 2.73 Å denotes the

thermal de Broglie wavelength, a = r�1/3 is the mean nearest-

neighbor distance in the fluid and r denotes fluid density).

Furthermore, we show that semiclassical FH effective potentials

poorly reproduce the mean kinetic energy of 4He at 10 K. And

so, the mean kinetic energy computed from PIMC is reproduced

by semiclassical FH potentials in a very limited range of fluid

densities, i.e. L/a o 0.17. The density of para-H2 adsorbed

in carbon nanotubes and other nanoporous materials at

cryogenic temperatures reached 50 mmol cm�3 (see ref. 10).

Following the current study, we predict that semiclassical FH

effective potentials give reliable estimations of this para-H2

density at temperatures above 72 K (i.e. L/a o 0.45), whereas

to reproduce the mean kinetic energy of dense liquid-like para-H2

the temperature should exceed 510 K (i.e., L/a o 0.17).

This simple example shows that semiclassical FH effective

potentials are poor approximations of liquid-like quantum

liquids adsorbed in nanoporous materials at cryogenic

temperatures. Thus, our simulation results seem to be particularly

interesting for some fundamental problems of industrial

importance. For example, the storage of hydrogen, neon and

xenon at cryogenic temperatures, the transport of molecular

hydrogen/deuterium in metal-hybrids, porous bodies, and

alloys at cryogenic temperatures.

IV. Conclusions

We studied the applicability of the semiclassical Feynman and

Hibbs (FH) (second-order or fourth-order) effective potentials

to the description of the thermodynamic properties of

quantum fluids at finite temperatures. We selected low-density
4He at 10 K as our model quantum fluid. With PIMC, we

obtained the experimental equation of state, the mean kinetic

energy, the density matrix and the momentum distribution of

this system at low densities. We showed that our PIMC results

are in full agreement with static and thermodynamic properties

of low-density 4He at 10 K measured experimentally. Finally,

we explored the limitations of the semiclassical FH effective

potentials during the computation of the thermodynamic

properties of quantum fluids at finite temperatures. We found

that to reproduce the experimental density of quantum fluids

by semiclassical FH effective potentials the reduced thermal de

Broglie wavelength should fulfil the following condition:

L/a o 0.45. In contrast, the mean kinetic energy can be only

reproduced by these semiclassical potentials for L/a o 0.17.

Our simulation results shine new light on the ad hoc application

of the semiclassical FH effective potentials for the study of

dense quantum fluids adsorbed in nanoporous materials.
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