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We present a new method for the prediction of the equilibrium properties of dense gases containing hydrogen
isotopes. The proposed approach combines the Feynman-Hibbs effective potential method and a deconvolution
scheme introduced by Weeks et al. The resulting equations of state and the chemical potentials as functions
of pressure for each of the hydrogen isotope gases depend on a single set of Lennard-Jones parameters. In
addition to its simplicity, the proposed method with optimized Lennard-Jones potential parameters accurately
describes the equilibrium properties of hydrogen isotope fluids in the regime of moderate temperatures and
pressures. The present approach should find applications in the nonlocal density functional theory of
inhomogeneous quantum fluids and should also be of particular relevance to hydrogen (clean energy) storage
and to the separation of quantum isotopes by novel nanomaterials.

I. Introduction

Johnson et al.1,2 and Tanaka et al.3 found that carbon nano-
tubes and carbon nanohorns might serve as “quantum sieves”
to separate common hydrogen from its radioactive isotope,
tritium. To explain this novel phenomenon, both of these
research groups employed basic quantum mechanical principles.
Hydrogen isotopes are characterized by the same physical
size and shape; however, tritium is more massive than both
deuterium and hydrogen. Furthermore, it is well-known that the
thermal de Broglie wavelength increases as the temperature and
molecular mass are lowered. As a result, the interactions between
hydrogen isotopes are different in the both the bulk phase and
in confinement. Also, the interaction energies of the lighter
hydrogen isotopes are weaker than the heavier isotopes because
of the higher energies of the quantum states.4 In confinement,
these quantum effects are enhanced in comparison with the bulk
phase because of the very large potential gradients that exist
within objects of nanoscale dimensions, and, as a consequence,
the motion of quantum molecules is restricted in some directions.
A quasi-one-dimensional system such as a single-walled carbon
nanotube would appear to be a very good illustration of this
effect.5,6 In the radial direction, the movement of light molecules
at low temperatures is quantized, whereas, in the longitudinal
direction, the molecules can move freely.7

It is clear that an accurate description of the properties (most
notably, pressure-volume-temperature behavior and chemical
potential) of hydrogen isotopes in the bulk phase is necessary
for the proper modeling of “quantum filters” by computer
simulations or density functional theories of inhomogeneous
quantum fluids. Computer simulations have been successfully
applied to the prediction of the equilibrium properties of

hydrogen isotopes.8,9 On the other hand, Evans et al.,10 Tarazona
et al.,11,12 Henderson et al.13 and others14-16 have developed
theoretical methods appropriate for classical fluids. These
theories have several advantages over direct computer simula-
tions. First, they are less computationally demanding. Second,
they provide deep insight into the microscopic properties of
fluids such as the role of repulsive forces in freezing phenomena
and so forth. Third, they are as accurate as direct computer
simulations; although a significant problem is in the correlation
of the potential parameters to experimental measurements or
other reference data.15

A key feature connected with the behavior of simple classical
fluids was remarked upon by Weeks et al.17 thirty five years
ago: “At intermediate and large waVe Vectors, the repulsiVe
forces dominate the quantitatiVe behaVior of the liquid structure
factor. The attractions are manifested primarily in the small
waVeVector part of the structure factor; but this effect decreases
as the density increases and is almost negligible at reduced
densities higher than 0.65.”Indeed, short-range repulsive forces
are primarily responsible for the ordering of nematic liquid
crystals.18,19For such stiff molecules, the simple hard-rod model
introduced by Onsager can explain the nematic-isotropic liquid
transition without the need to include the influence of the
attractive forces.20,21 In the same spirit, as has been shown by
Sese and others, for moderate temperatures and pressures, the
effective potential method introduced by Feynman and Hibbs
(FH) may be employed to incorporate quantum effects into the
analysis of the behavior of fluids.22-26

In the work reported here, we combine the FH effective
potential method4,27with the treatment of attractive and repulsive
forces according to the scheme introduced by Weeks et al.17

As others have done, we select the two-parameter Lennard-
Jones (LJ) spherical potential as the reference potential.3,24,26

Furthermore, in view of the mean field approximation involved
in our modeling, the LJ parameters were optimized with
reference to both the equation of state and the dependence of
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the chemical potential on pressure for hydrogen, deuterium, and
tritium, as obtained from Monte Carlo simulations. The present
results do not support the equation of state for hydrogen at 77 K
suggested by Jagiello et al.28,29Our approach can also be easily
adopted for isotopes of any other element to obtain their equi-
librium properties.

II. Theory

Following Sese,23,24 we assume that the hydrogen isotopes
interact via the quadratic FH quantum effective potential,

where the classical potential is represented by the one-center
LJ equation,

Here,â ) (kBT)-1, p ) h/2π, µm ) m/2 is the reduced mass of
a pair of interacting fluid molecules,h denotes Planck’s constant,
kB is Boltzmann’s constant,σff denotes the LJ collision diameter,
and εff is the LJ potential well. We want to stress that, for
hydrogen, deuterium, and tritium, the LJ parameters have the
same numerical value. The second term in eq 1 accounts for
quantum corrections to the statistical properties generated by
the classical LJ potential. The FH variation approach is expected
to be reliable for de Broglie wavelengths in the rangeλB

/ )
h/(2πmkBTσff

2)1/2 e 0.7. This boundary value was established
by Sese by direct comparison of the structural properties of
quantum fluids computed from FH and path integral Monte
Carlo simulations.23,24,30,31 Obviously, for λB

/ > 0.7, eq 1
cannot capture the quantum spreading resulting from Heisen-
berg’s uncertainty principle. The approximation of the diatomic
hydrogen isotope molecule by an effective LJ sphere is justified
by the high temperature and low-density region investigated in
the current study.

Substituting eq 2 into eq 1 yields

where

Weeks et al.17 demonstrated that the correlations in classical
fluids are primarily determined by the repulsive forces. In accord
with this fundamental observation, we assume a deconvolution
of attractive and repulsive forces in quantum fluids according
to a similar scheme. This is considered to be reasonable since
the quantum correction enlarges the effective diameter of the
molecule in comparison to its classical counterpart. However,
the general form of the potential function is characterized by a
similar deconstruction (see Figure 1). Following Weeks et al.,17

we represent the attractive part of the FH effective potential by
the following scheme (see Figure 1):

where rm ) æ221/6σff , rc ) 5σff , and the two temperature-
dependent parametersæ1 andæ2 are obtained from an analysis
of the position of the minimum in the FH potential. Also note
thatæ1 e 1 andæ2 g 1, and, as one may observe from Figure
1, æ1 andæ2 are responsible for scaling both the position and
magnitude of the minimum of the FH potential for all hydrogen
isotopes. Reducing the influence of quantum effects by increas-
ing the temperature reproduces the deconvolution scheme
introduced by Weeks et al.17 sinceæ1 f æ2 f 1. At any given
temperature of interest,æ1 and æ2 can be simply determined
by standard numerical methods.

According to the van der Waals approximation, the pressure
and chemical potential of a homogeneous quantum fluid can
be determined from10

The integral in each of these expressions may be determined
using eq 4, which can be solved analytically to give

where the coefficients are defined as follows:

VFH(r) ) VLJ(r) + âp2

24µm
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Figure 1. Deconvolution of the FH interaction potential into a part
containing all the repulsive forces (dashed line),u0(r), and a part
containing the attractive forces (solid line),u(r).
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The pressure and chemical potential of a reference system
characterized by pure repulsive forces, that is, a hard-sphere
fluid, can be computed from the Carnahan-Starling equation
of state,32

In eqs 13 and 14,η ) πFbσff
3/6 denotes the packing fraction of

hard-spheres of sizeσff , andλB ) h/(2πmkBT)1/2 is the thermal
de Broglie wavelength.

In summary, the present approach, being a combination of
the methods of Feynman-Hibbs and Weeks et al. allows the
simultaneous description of the equations of state and the
variation of chemical potential with pressure for isotopes of any
element at moderate pressures and temperatures. For high
temperatures, the quantum effects disappear, and the proposed
method reproduces the known results provided by the theory
of simple fluids.

III. Results and Discussion

A. Simulation Details. According to Gubbins and Quirke,33

computer simulations are an alternative tool for the estimation
of the equation of state for fluids. When the underlying physical
situation and the intermolecular potentials are known, computer
simulations are a convenient vehicle for extrapolating experi-
mental results to conditions that are difficult to access experi-
mentally. Tritium would appear to be a good example because
of its reactivity.20 In the current work, we used Monte Carlo
simulations in the canonical ensemble to obtain the equation of
state and the dependence of the chemical potential on pressure
for hydrogen, deuterium, and tritium at selected temperatures.34

Because of their technological importance, we chose five
temperatures: 77 K (temperature of liquid nitrogen), 195 K
(temperature of dry ice), 273 K (melting point of water), 293
K (room temperature), and 303 K (temperature used in
experimental measurements). In the canonical Monte Carlo
ensemble simulations, we model the interactions of hydrogen
isotopes according to eq 3 withσff ) 0.2958 nm andεff /kB )
36.7 K. To simulate the bulk properties of hydrogen isotopes,
we adopted a cubic simulation box of unit length with periodic
boundary conditions in all directions. The number of molecules
in all of the MC simulations was 108. In the canonical ensemble,
6 × 104 configurations were generated. We discarded the first
1 × 104 configurations to guarantee equilibration, whereas the
latter 3× 104 configurations were used to obtain the desired
thermodynamic properties. For arbitrary selected points, we
stored the fluctuations in the total energy. Next, we analyzed
the variation of the internal energy to ensure that thermodynamic
equilibrium was achieved. During the Monte Carlo simulation,

we computed the pressure from the virial theorem corresponding
to eq 3. We estimated the excess part of the chemical potential
of an isotope according to Widom’s particle insertion method,35

and, using methods described by Frenkel and Smit, we added
the tail corrections for the energy and pressure.36

B. LJ Parameters for Hydrogen Isotopes.The equations
describing the bulk pressure and chemical potential as functions
of the density for pure hydrogen isotope fluids should be
supplemented with a single set of appropriate parameters, that
is, σff and εff .15 The parameters adopted in the Monte Carlo
simulations of hydrogen isotopes, however, cannot be employed
in the mean field expressions, eq 5 and 6, because of simplifica-
tions introduced into the mean field approach for homogeneous
quantum fluids. For proper calibration of the LJ parameters,
we define the following functional:

wherew1 ) 0.5, M is the number of points,j denotes a given
hydrogen isotope (i.e.,j ) 1,2,3 corresponds to H2, D2, T2,
respectively),Pi

sim,j and µi
sim,j are the pressure and chemical

potential of thejth isotope in the bulk state computed from
Monte Carlo simulations, respectively, andPi

comp.j and µi
comp,j

are the pressure and chemical potential of thejth isotope in the
bulk state computed from eqs 5 and 6, respectively. With the
aid of eq 15, our goal is to generate a single pair of LJ
parametersσff and εff suitable for use with the mean field
equations (eqs 5 and 6), which would provide the same degree
of precision in the estimation of both the pressure and the
chemical potential as would be obtained if the more rigorous,
though computationally demanding, Monte Carlo simulations
were employed. The simultaneous description of the pressure
and chemical potential of hydrogen isotopes is necessary because
of the dependence of the chemical potential upon the thermal
de Broglie wavelength (see Table 1S, Supporting Information).
As we will show later, the dependencesp ) f(Fb) for hydrogen
isotopes at higher temperatures are the same; however,µ )
f(Fb) diverges from one hydrogen isotope to another. We have
used a real-coded genetic algorithm for solution of the mini-
mization problem given by eq 15.37

TABLE 1: Optimized Parameters for the Calculation of the
Equations of State for Hydrogen, Deuterium, and Tritium
(Eqs 5 and 6)

parameter

temperature
(K)

pressure range
(MPa)

σff

(Å)
εff /kb

(K)

77 (liquid nitrogen) P < 6 2.398195 36.688746

194.6 (dry ice) P < 10 2.823009 36.701448
P < 20 2.779135 36.703918
P < 40 2.753677 36.69396

273 (melting point of water) P < 10 2.724697 36.700465
P < 20 2.71788 36.701516
P < 40 2.703775 36.703621

293 (room temperature) P < 10 2.716061 36.700227
P < 20 2.700121 36.701722
P < 40 2.692514 36.703336

303 (measurements) P < 10 2.699777 36.700482
P < 20 2.697533 36.701175
P < 40 2.686159 36.703273

I3 ) 16
9
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3æ2
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6
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3Fb) + 8η - 9η2 + 3η3
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∑
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C. The Properties of the Proposed Approach.The key
results of the present approach are summarized in Tables 1
and 2. Excluding 77 K, a single set of LJ parameters accurately
describes both the equation of state and the variation of the
chemical potential with pressure for hydrogen isotopes over a
wide range of bulk pressures (see Figures 2 and 3, and

Supporting Information Figures 4S and 5S). Moreover, the LJ
parameters slightly depend on the temperature and range of bulk
pressure (see Table 1). It is observed that the LJ collision
diameter is smaller than the one adopted in the Monte Carlo
simulations of hydrogen isotopes, whereas the LJ well depth is
almost the same. The slight dependence of the LJ parameters
on temperature justifies the deconvolution scheme proposed in
the current study. At 77 K, the fitting of both the equation of
state and the dependence of chemical potential versus bulk
pressure for hydrogen isotopes by a single set of LJ parameters
is accurate up to 3 MPa (see Figure 4). For this reason, we
have also individually adjusted eqs 5 and 6 for the hydrogen
isotopes (see Table 3 and Figure 7S, Supporting Information).

The van der Waals theory of classical fluids adopted by
Jagiello et al.28,29 in their nonlocal density functional theory of
inhomogeneous hydrogen cannot describe the equilibrium

Figure 2. Simultaneous description of the equations of state and the
dependence of the chemical potentials on pressure for hydrogen isotopes
at 303 K. For comparison, we added experimental equations of state
for hydrogen, which are labeled as “Ref”.38

Figure 3. Simultaneous description of the equations of state and the
dependence of the chemical potentials on pressure for hydrogen isotopes
at 195 K.

TABLE 2: Optimized Parameters for the Calculation of the
Equations of State for Hydrogen, Deuterium, and Tritium
(Eqs 5 and 6)

parameter

temperature
(K) isotope

pressure
range
(MPa)

σff

(Å)
εff /kb

(K)

77 (liquid nitrogen) hydrogen < 6 2.074317 36.684471
deuterium 2.318794 36.686837
tritium 2.39819 36.688747

hydrogen < 10 1.75349 36.651343
deuterium 2.128009 36.636351
tritium 2.250168 36.634215

Figure 4. Simultaneous description of the equations of state and the
dependence of the chemical potentials on pressure for hydrogen isotopes
at 77 K.

Figure 5. Simultaneous description of the equation of state and the
dependence of the chemical potential on pressure for hydrogen at 77 K.
Abbreviations: QMC denotes the results of quantum-corrected Monte
Carlo simulation; QNDFT denotes the predictions of the proposed
method; NDFT denotes the results obtained from the theory of classical
simple fluids with parameters suggested by Jagiello et al.;28,29and Ref
denotes experimental equations of state.38
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properties of homogeneous hydrogen at 77 K (see Figure 5).
At very low pressures of hydrogen (up to 2-3 MPa), the
approach described above accurately describes the hydrogen
equation of state. However, the dependence of the chemical
potential versus bulk pressure of hydrogen is not reproduced.
At higher bulk pressures of hydrogen at 77 K, the description
of equation of state by the classical scheme is unreliable.

In summary, the proposed method accurately describes the
equilibrium properties of hydrogen isotopes. At 77 K and pres-
sures above 3 MPa, we have estimated individual LJ parameters
for hydrogen, deuterium, and tritium (see Table 3). Below 3
MPa at 77 K, a single set of LJ parameters can be used for the
proper calculation of the equation of state and the dependence
of the chemical potential on the density of hydrogen, deuterium,
and tritium (see Table 2). For all remaining temperatures
investigated in this work, a single set of LJ parameters accurately
describes the equilibrium properties of hydrogen isotopes over
a wide range of bulk pressures up to 40 MPa (see Table 2).
The theory developed here is a starting point for the modeling
of inhomogeneous quantum fluids, which is particularly im-
portant in the problem of clean energy storage and in the
separation of isotopes by quantum sieves.

IV. Conclusion

We present a new method for the prediction of the equilibrium
properties of dense gases containing hydrogen isotopes. The
proposed approach combines the FH effective potential method
and a deconvolution scheme introduced by Weeks et al. Besides
its simplicity, the equations developed in this work accurately
described both the equation of state and the pressure dependence
of the chemical potential for hydrogen, deuterium, and tritium.
The present approach should find applications in the nonlocal
density functional theory of inhomogeneous quantum fluids and
should also be of particular relevance to hydrogen (clean energy)
storage and to the separation of quantum isotopes by novel
nanomaterials.
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